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large number of such repetitions into our teaching. It may
bore a few poor students, but almost all benefit.

IX. THE IMPORTANCE OF CALCULATING WITH
NUMBERS

The world has changed quite a bit in the past 30 or 40
years. When I was an undergraduate we learned that there
are only four angles in this world, namely, 30°, 45°, 60°, and
90°. Furthermore, all measurements are divisible by 2, of-
ten by 3 and 4, and, curiously, not infrequently by 49. It
came as something of a surprise, when I embarked on ex-
perimental research, to find that most measurements are
embarrassingly inelegant numbers, and that angles, as of-
ten as not, wander somewhere between those canonical val-
ues we learned in class.

I understand why my student problems had such
remarkably simple numbers. It was just that nobody liked
long division, and the alternatives were few.

Of course, we did have pocket calculators, or, more ac-
curately, hip calculators. But they were hard to use, re-
quired a fair amount of manual dexterity to get results ac-
curate to three figures. They were slow, and very expensive.
My present shirt pocket calculator, whose batteries have
already lasted two years, not only gives me nine figures and
hyperbolic functions, but even does arithmetic in hexadeci-
mal. It cost $14.29. When students grumble about the ex-
pense, I delight to tell them that my 1945 log log duplex trig
calculator, required on every test, cost me $176 (in 1985
dollars, using an average inflation rate of 5% per annum).
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My point is this. Calculating power today is dirt cheap.
It costs far less than textbooks and it lasts from one course
to another. It gives us the opportunity to teach the physics
of the real world rather than the physics of the textbook.
Our students, furthermore, at least our technically inclined
students, will spend their lives making use of these calcula-
tors.

This needs to be recognized in what we do in our calcu-
lus-based physics. Thirty, 60, and 90 ought to be reduced to
their proper place. In my classes, tests, if not textbook
problems, have angles like 27.6°. Automobiles have speeds
of 37 km/h. Electrons move in orbits of radius 0.26 centi-
meters. The only difficulties students have with this is that
too frequently their calculations seem to be accurate to one
part in ten to the ninth.

All this is fine for the science and engineering students.
What about the liberal arts students? Years ago, I would
not have dreamed of asking them to buy slide rules. I hesi-
tate now to ask them to have calculators, yet I note that
almost all do. I continue to give them problems with nice
numbers, yet I find them using a calculator to divide 8 by 4.
I’'m beginning to think that they too should always deal
with real-world numbers. If they have to use a calculator to
divide 8 by 4, they might as well be dividing 8.63 by 4.79.

By now I have run the device of numbers into the
ground. It has given me a handy framework to air my grie-
vances about and my hopes for physics teaching. I hope I
will hear more about these dirty problems of physics teach-
ing in less than ideal circumstance from the rest of you. Let
me thank the AAPT once again for giving me this award.
Thank you all for hearing me out.

(Received 5 February 1984; accepted for publication 1 May 1985)

According to the prevailing belief, the spin of the electron or of some other particle is a mysterious
internal angular momentum for which no concrete physical picture is available, and for which
there is no classical analog. However, on the basis of an old calculation by Belinfante [ Physica 6,
887 (1939)], it can be shown that the spin may be regarded as an angular momentum generated
by a circulating flow of energy in the wave field of the electron. Likewise, the magnetic moment
may be regarded as generated by a circulating flow of charge in the wave field. This provides an
intuitively appealing picture and establishes that neither the spin nor the magnetic moment are
“internal”—they are not associated with the internal structure of the electron, but rather with the
structure of its wave field. Furthermore, a comparison between calculations of angular
momentum in the Dirac and electromagnetic fields shows that the spin of the electron is entirely
analogous to the angular momentum carried by a classical circularly polarized wave.

L INTRODUCTION

When Goudsmit and Uhlenbeck proposed the hypothe-
sis of the spin of the electron, they had in mind a mechani-

500 Am. J. Phys. 54 (6), June 1986

cal picture of the electron as a small rigid body rotating
about its axis. Such a picture had earlier been considered by
Kronig and discarded on the advice of Pauli, Kramers, and
Heisenberg, who deemed it a fatal flaw of this picture that

© 1986 American Association of Physics Teachers 500



the speed of rotation—calculated from the magnitude of
the spin and a plausible estimate of the radius of the elec-
tron—was in excess of the speed of light. However, the
great success of the spin hypothesis in explaining the Zee-
man effect and the doublet structure of spectral lines quick-
ly led to its acceptance.’ Since the naive mechanical picture
of spin proved untenable, physicists were left with the con-
cept of spin minus its physical basis, like the grin of the
Cheshire cat. Pauli pontificated that spin is “an essentially
quantum-mechanical property,...a classically not describ-
able two-valuedness”” and he insisted that the lack of a
concrete picture was a satisfactory state of affairs:

After a brief period of spiritual and human confusion,
caused by a provisional restriction to ‘Anschaulichkeit’,
a general agreement was reached following the substitu-
tion of abstract mathematical symbols, as for instance
psi, for concrete pictures. Especially the concrete picture
of rotation has been replaced by mathematical charac-
teristics of the representations of rotations in three-di-
mensional space.’

Thus physicists gradually came to regard the spin as an
abstruse quantum property of the electron, a property not
amenable to physical explanation.

Judging from statements found in modern textbooks on
atomic physics and quantum theory, one would think our
understanding of spin (or the lack thereof) has not made
any progress since the early years of quantum mechanics.
The spin is usually said to be a nonorbital, “internal,” “in-
trinsic,” or “inherent” angular momentum (the words are
often used interchangeably, although they should not be),
and it is often treated as an irreducible entity that cannot be
explained further. Sometimes the (unsubstantiated) sug-
gestion is made that the spin is due to an (unspecified)
internal structure of the electron.* And sometimes the con-
solation is offered that the spin arises in a natural way from
Dirac’s equation® or from the analysis of the representa-
tions of the Lorentz group. It is true that the Dirac equa-
tion contains a wealth of information about spin: The equa-
tion tells us that the spinor wavefunctions are indeed
endowed with a spin angular momentum of #i/2, it supplies
the mathematical description of the kinematics of a free-
electron or other particle of spin one-half, and—in con-
junction with the principle of minimal coupling—it sup-
plies the equations governing the dynamics of a charged
particle immersed in a electromagnetic field, equations
which directly yield the correct value of the gyromagnetic
ratio for the electron. It is also true that the analysis of the
representations of the Lorentz group is very informative:
The analysis tells us that the quantum-mechanical wave-
functions must be certain types of tensors or spinors char-
acterized by a value of the mass and (if the mass is not
negative) an integer or half-integer value of the spin. But in
all of this the spin merely plays the role of an extra, nonor-
bital angular momentum of unknown etiology. Thus the
mathematical formalism of the Dirac equation and of
group theory demands the existence of the spin to achieve
the conservation of angular momentum and to construct
the generators of the rotation group, but fails to give us any
understanding of the physical mechanism that produces
the spin.

The lack of a concrete picture of the spin leaves a griev-
ous gap in our understanding of quantum mechanics. The
prevailing acquiescence to this unsatisfactory situation be-
comes all the more puzzling when one realizes that the
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means for filling this gap have been at hand since 1939,
when Belinfante® established that the spin could be regard-
ed as due to a circulating flow of energy, or a momentum
density, in the electron wave field. He established that this
picture of the spin is valid not only for electrons, but also
for photons, vector mesons, and gravitons—in all cases the
spin angular momentum is due to a circulating energy flow
in the fields. Thus contrary to the common prejudice, the
spin of the electron has a close classical analog: It is an
angular momentum of exactly the same kind as carried by
the fields of a circularly polarized electromagnetic wave.
Furthermore, according to a result established by Gordon’
in 1928, the magnetic moment of the electron is due to the
circulating flow of charge in the electron wave field. This
means that neither the spin nor the magnetic moment are
internal properties of the electron—they have nothing to
do with the internal structure of the electron, but only with
the structure of its wave field.

Unfortunately, this clear picture of the physical origin of
the spin and of the magnetic moment has not received the
wide recognition it deserves, perhaps because neither Be-
linfante nor Gordon loudly proclaimed that their calcula-
tions provided a new physical explanation of the spin and
of the magnetic moment. These calculations are sometimes
reproduced in texts on quantum field theory,® but usually
without any commentary on their physical interpretation.
In the present paper, it is my objective to revive these for-
gotten explanations of the spin and the magnetic moment
in the hope that the intuitive picture of circulating energy
and charge will become part of the lore learned by all stu-
dents of physics. I want to emphasize that, in contrast to
some other attempts at explaining the spin,” the present
explanation is completely consistent with the standard in-
terpretation of quantum mechanics.

A crucial ingredient in Belinfante’s calculation of the
spin angular momentum is the use of the symmetrized en-
ergy-momentum tensor. It is well known that in a field
theory we can construct several energy-momentum ten-
sors, all of which satisfy the conservation law 3, T*” =0,
and all of which yield the same net energy (§ 7% d >x) and
momentum (§ T *° d 3x) as the canonical energy-momen-
tum tensor.'® These diverse energy-momentum tensors dif-
fer by terms of the form 8, U***, which are antisymmetric
in the last two indices (U*** = — U**), and therefore
identically satisfy the conservation law 4,3, U*** = 0. Be-
linfante showed that by a suitable choice of the term
d, 0¥, it is always possible to construct a symmetrized
energy-momentum tensor (T#" =T"). The symme-
trized energy-momentum tensor has the distinctive advan-
tage that the angular momentum calculated directly from
the momentum density 7 *° is a conserved quantity (in the
absence of external torques). This means that the momen-
tum density gives rise to both orbital angular momentum
and spin angular momentum. Ifinstead of the symmetrized
energy-momentum tensor, we were to use the unsymme-
trized canonical energy-momentum tensor, then the mo-
mentum density would not give rise to the spin angular
momentum. This does not mean that the spin would vanish
from the theory—an examination of the conservation law
for angular momentum shows that the spin emerges as a
mysterious extra quantity that must be added to the orbital
angular momentum to achieve conservation—but the sim-
ple and clear physical mechanism underlying spin would
vanish. I will take it for granted that the symmetrized ener-
gy-momentum tensor is the correct energy-momentum
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tensor. As emphasized by Rosenfeld,"’ this is not an arbi-
trary choice; rather, it is compellingly demanded by Ein-
stein’s theory of gravitation, which is compatible only with
a symmetric energy-momentum tensor.

IL. SPIN IN THE ELECTROMAGNETIC FIELD

The energy flow in the electromagnetic field (in vacu-
um) is given by the Poynting vector EXB/u,. The mo-
mentum density G is the same, except for a factor of 1/c*

G = EXB/u,> (1)

In an infinite plane wave, the E and B fields are everywhere
perpendicular to the wave vector and the energy flow is
everywhere parallel to the wave vector. However, in a wave
of finite transverse extent, the E and B fields have a compo-
nent parallel to the wave vector (the field lines are closed
loops) and the energy flow has components perpendicular
to the wave vector. For instance, Fig. 1 shows the time-
average transverse energy flow in a circularly polarized
wave propagating in the z direction; the wave has a finite
extent in the x and p directions and it has cylindrical sym-
metry about the z axis. Besides the circulating energy flow
shown in Fig. 1, the wave has a translational flow in the z
direction; hence the net energy flow is helical. The circulat-
ing energy flow in the wave implies the existence of angular
momentum, whose direction is along the direction of prop-
agation. This angular momentum is the spin of the wave. If
the wave is not centered on the origin or if the wave is
asymmetric, then the translational energy flow implies the
existence of an additional “orbital” angular momentum.

To obtain an expression for the net angular momentum
in an arbitrary wave packet, we begin by expressing the
momentum density as a sum of two terms:

EXB/ugc’ = EX(VXA)/uc?
= [E"VA" — (E-V)A]/u,c> (2)

Correspondingly, the net angular momentum is a sum of
two terms:

=—1—2fxx(E'VA" )dx
Hot

1 f 3
+— |xx [ — (E-V)A]d x. (3)
Hoc”

Fig. 1. This pattern of circular flow lines represents the time-average ener-
gy flow, or the momentum density, in a circularly polarized electromag-
netic wave packet. On a given wave front, say z = 0, the fields are assumed
to be constant within a circular area and to decrease to zero outside of this
area (the dashed line gives the field amplitude as a function of radius).
The energy flow has been calculated from an approximate solution of
Maxwell’s equations. The picture only shows the flow in the transverse
directions. The flow in the longitudinal direction is much larger; the net
flow is helical.
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With an integration by parts and with V-E = 0 this be-
comes

=L (xx@vanas+ L [Exaas
Hot Hot

One big advantage of Eq. (4) over Eq. (2) is that the for-
mer permits a direct and simple evaluation of the spin in a
quasiplane wave consisting of an inner region of large vol-
ume within which the amplitudes of the electric and mag-
netic fields are nearly uniform, surrounded by an outer re-
gion of small volume within which the amplitudes are
decreasing and nonuniform. According to Eq. (3), the eva-
luation of the spin angular momentum in such a wave re-
quires a knowledge of the (very complicated) fields in the
outer region. But according to Eq. (4), the spin receives
most of its contribution from the inner region, and the out-
er region can be neglected, vastly simplifying calculation.
The mathematical equivalence between these two ways of
calculating the spin is reminiscent of the equivalence
between the two ways of calculating the magnetic field of a
uniformly magnetized body: either by integrating the mag-
netization over the volume of the body, or else by integrat-
ing the Amperian magnetization current over the surface
of the body.

The first term in Eq. (4) represents the orbital angular
momentum, and the second term the spin. To justify this
interpretation, consider a circularly polarized plane wave
with a vector potential

A= (iiiﬁ)(iEo/w)eiwt—iwz/c‘ (5)

Of course, at the edge of the wave this vector potential will
have to be modified to fit the decreasing, nonuniform fields;
but for a quasiplane wave we can neglect this modification.
The time-average values of the integrals in Eq. (4) are then

L=_17JRe(xxE"VA*")d3x=—1—3xx(iE%)d3x
2 Hoe

(6)
and
1 [ 2E3
poc® J wdx

1

N
2u,c”

S=

fRe(ExA"‘)dg’x = +

The first of these expressions is independent of polariza-
tion, and it is exactly what we expect for the orbital angular
momentum of the plane wave. The second expression is
independent on the polarization, and we must therefore
identify it as the spin. Note that the individual integrals in
Eq. (4) are not gauge invariant. This means that the sepa-
ration into orbital and spin parts provided by Eq. (4) is tied
to a particular choice of gauge, viz., the choice of gauge
specified by Eq. (5). Of course, the net expression (3) for
the angular momentum is gauge invariant, and if we want
to calculate in some arbitrary gauge, then we must return
to this net expression.

According to Eq. (4), the mechanism underlying spin is
not essentially different from that underlying orbital angu-
lar momentum: Both forms of angular momentum arise
from the momentum density in the fields. The distinction
between spin and orbital contributions to the total angular
momentum merely results from the independence of these
contributions: The portion of the momentum density that
gives rise to the spin can be reversed independently of the
portion that gives rise to the orbital angular momentum.
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The energy in the wave (5) is
1 f 3 1 2 43
U=—— 1] Re(E-E*)d x=—J\E0 dx. (8)
2u,’ Hoc?

Hence the ration of spin to energy is
S,/U=1/w. 9

If we normalize the wave so that its energy is one quantum
(U = #iw), then its spin will be S, = #. The magnitude of
the spin or the photon is therefore uniquely determined by
Maxwell’s equations and the condition of energy quantiza-
tion. However, in order to obtain the complete mathemat-
ical formalism for the quantum-mechanical description of
the spin (commutation relations), we need to quantize the
electromagnetic field. This requires the methods of quan-
tum field theory.

IT1. SPIN IN THE DIRAC FIELD

According to the symmetrized energy-momentum ten-
sor, the momentum density in the Dirac field is'2

=i(¢fv¢—-1—¢*aﬂ)+hc, (10)
4i ¢ at

where hc stands for the hermitian conjugate of the preced-
ing term. The time derivative appearing in Eq. (10) can be
eliminated by means of the Dirac equation

18 _(_qvipme
which gives
G = (#/4) [¢'Vy + a(a-V)¢] + he. (12)

The commutation relations for the matrices @, thenlead to

G = (#/2)) [¢'Vy — (V¥")Y] + (H/4)VX (Hlay), 3
(13)

where 0, = — ia,a;, 0, = —ia;a,, and 05 = — ia,a,.

The first term in this momentum density is associated
with the translational motion of the electron, whereas the
second term is associated with circulating flow of energy in
the rest frame of the electron. For instance, consider the
Gaussian packet

¢= (,”.dZ)—SMe—(1/2);2/d2w1(0) (14)

which represents, in the nonrelativistic limit (d>#/mc),
an electron of spin up with zero expectation value of the
momentum. Then the first term in Eq. (13) is zero, and the
second term is

# ( 1 )S/Ze—r’/d’

= e— —— d2

4 \ 7d?

Figure 2 shows the flow lines for the energy. As in the case
of the electromagnetic wave, such a circulating flow of en-
ergy will give rise to an angular momentum. This angular
momentum is the spin of the electron.

For an arbitrary wave packet, the net angular momen-
tum is

J =f—§x>< [V — (Vyhpld

(—2y & + 2x¥). 15

+f%x>< (VX (¢'0)¢)d . (16)

Here it is convenient to expand the triple cross product in
the second integral into two dot products and then inte-
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Fig. 2. This pattern of flow lines represents the energy flow in the spinor
wave packet (14) describing an electron with spin in the z direction and
with zero average momentum.

grate both of these by parts. This gives the result

J=%jxx[¢*v¢— (Vghpldx

+§j¢*«r¢d3x. a7

The first term is the orbital angular momentum and the
second term is the spin:

s=—2"—f¢fo¢d3x. (18)

As in the case of the electromagnetic wave, we can justify
this identification by noting that the first term is indepen-
dent of the spinorial state and has the form expected of the
orbital angular momentum, whereas the second term is de-
pendent on the spinorial state. Note that, since the spin
defined by Eq. (18) is the expectation value of the quan-
tum-mechanical operator @, the operator representing the
spin must be

S,, = (#/2)e. (19)

Thus the spin operator obeys all the usual commutation
relations, and we can deduce all the familiar quantum-
theoretical properties of the spin from our equations. In
particular, the eigenvalues of any component of the spin,
say the z component, are 4 #/2 and substitution of the
corresponding (normalized) eigenfunction into Eq. (18)
yields the value + #/2 for the integral representing S, .
What is important here is not so much the numerical value
of this result—there are a variety of ways of establishing
that the Dirac spinors correspond to spin #i/2—but rather
the underlying physical picture of the spin as due to a circu-
lating energy flow in the Dirac field.

IV. THE MAGNETIC MOMENT OF THE
ELECTRON

In Sec. IIT we saw that the spin can be attributed to a
circulating flow of energy in the wave field. It will therefore
come as no surprise that the magnetic moment of the elec-
tron similarly can be attributed to a circulating flow of elec-
tric charge in the wave field, a circulating flow of charge
that exists even for an electron at rest. To recognize the
existence of this flow, we separate the standard electric cur-
rent density — ey* ¢ of the Dirac field into two parts by
means of the well-known Gordon decomposition formula,
which is a consequence of the Dirac equation for a free-
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electron:”13
—ecy*p = — (eB/2mi) [§0, ¥ — (3, Y]
— (efi/2m)d, (Ya*y). (20)

Here the first term is a convection current density associat-
ed with the translational motion of the electron. For an
electron in a state with orbital angular momentum, this
convection current density gives rise to an orbital magnetic
moment. The second term is a spin current density, which
is nonzero even in the rest frame of the electron.' For ex-
ample, if the electron is in the state specified by Eq. (14),
the flow lines for the spin current are closed circles, as they
are for the momentum density, but of the opposite direc-
tion.!* Obviously, such a current will generate a magnetic
moment of the opposite direction as the spin.

To establish the general relationship between this mag-
netic moment and the spin, we decompose the spin current
density into two terms:

f= =24, Gow
2m
efi , 5 efi J -
= —— 38, Yo'y — —— = ($o*%%). 21
S Y- . 2D
This can be rewritten as
apP
js = VXM + —, 22
Js XM + En (22)
where
M= — (efi/2m)y'Y oy (23)
and
P = (iefi/2mc) ¢y ay. (24)

Thus js is the sum of a magnetization current density
and a polarization current density. The former is associat-
ed with a magnetic moment per unit volume
M = — (efi/2m)¢/ o and the latter with an electric di-
pole moment per unit volume P = (iefi/2mc)y'y’a ¢.
Equation (23) implies that the magnetic moment of the
electron is

m=JMd3x= ——e—?—jz/ﬁy"m//d:*x. (25)
2m
[ Alternatively, the magnetic moment can be calculated as

the moment of the magnetization current,
m=—;—fxx(VxM)d3x. (26)

An integration by parts shows that this expression is equi-
valent to Eq. (25).]

Comparing Eq. (25) with (18) we see that, apart
from the factor of 7°, the magnetic moment coincides with
— e/m times the spin. More precisely, the magnetic-mo-
ment operator coincides with — ey®/m times the spin op-
erator,

m,, = — (e/m)y°S,,. 27

This is, of course, the usual result for the magnetic moment
of the electron. The standard derivation'® of this result
does not proceed via the definitions (25) or (26) of the
magnetic moment; instead, it proceeds via the Dirac equa-
tion by investigating the response of the electron to an ex-
ternal magnetic field, a response that is found to have form
expected for a magnetic moment. Thus the standard deri-
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vation fails to provide a physical picture of the mechanism
underlying the magnetic moment. Incidentally, the stan-
dard derivation explicitly invokes the principle of minimal
coupling. This principle enters the above calculation impli-
citly, through the assumption that the relevant current
density is simply — ey* ¢, rather than some more compli-
cated expression with, say, an extra term proportional to
d, Yo"y (such extra terms are required to account for the
“anomalous” magnetic moments of the proton and the
neutron).

Finally, what about the electric dipole moment, Eq.
(24)? In the nonrelativistic limit, °a is an “odd” operator
whose matrix elements are of order 1/m. Hence P is of
order 1/m?, which must be neglected in the nonrelativistic
limit. This means that the electron has no electric dipole
moment in its own rest frame. However, a moving electron
has an electric dipole moment in the laboratory frame. This
electric dipole moment can be regarded as arising from the
relativistic transformation law for electromagnetic fields:
A moving magnetic moment gives rise to an electric mo-
ment (and vice versa).

V. CONCLUSIONS

The calculations in the preceding sections should lay to
rest the common misconception that spin is an essentially
quantum-mechanical property. What these calculations
show is that spin is essentially a wave property, but whether
the wave is classical or quantum mechanical is of secon-
dary importance. The only fundamental difference
between the spins of a classical wave and a quantum-me-
chanical wave is that the spin of the former is a continuous
macroscopic parameter, whereas the spin of the latter is
quantized and is represented by a quantum-mechanical op-
erator. The argument is often made that since the spin of a
quantum-mechanical particle—such as photon—has a
fixed magnitude, it is not possible to proceed to the classical
limit of large quantum numbers, and consequently the spin
must be regarded as a quantum property without classical
analog. But this argument is flawed: Although we cannot
proceed to the limit of large quantum numbers for a single
particle, we can proceed to the limit of large occupation
numbers for a system of many particles. A circularly polar-
ized light wave is an example of a system in which the
classical macroscopic spin angular momentum arises from
the addition of a large number of quantum spins. Such a
classical limit is also possible for electrons, but we must
take the precaution of placing the electrons in different or-
bital states whenever we place them in the same spin state.
The Einstein—de Haas effect and the magnetization found
in permanent magnets involve classical limits brought
about by a large number of electron spins and magnetic
moments.

The physical picture of spin presented in the preceding
sections has great intuitive appeal because it confirms our
deep prejudice that angular momentum ought to be due to
some kind of rotational motion. But the rotational motion
consists of a circulation of energy in the wave fields, rather
than a rotation of some kind of rigid body. The spin is
intrinsic, or inherent, i.e., it is a fixed feature of the wave
field that does not depend on environmental circum-
stances. But it is not internal, i.e., it is not within the inter-
nal structure of the electron or photon (of course, the
structure of the wave field is crucial to the spin, but this is
not what is usually meant by internal structure).
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A conspicuous feature of the above physical picture is
the close kinship of spin and orbital angular momentum:
Both are due to the energy flow in the wave fields, and the
distinction between them hinges on the mathematical sepa-
ration of the angular momentum associated with the flow
into two independent portions. Since this physical picture
treats the spin and the orbital angular momentum in the
same way, it gives us as good an understanding of spin as of
orbital angular momentum. We no longer need to regard
the spin as a mysterious entity.

'For the early history of spin, see the article by B. L. van der Waerden in
Theoretical Physics in the Twentieth Century, edited by M. Fierzand V.
F. Weisskopf (Interscience, New York, 1960); Wolfgang Pauli: Wis-
senschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., edited
by A. Hermann, K. V. Meyenn, and V. F, Weisskopf (Springer, New
York, 1979); M. Jammer, The Conceptual Development of Quantum
Mechanics (McGraw-Hill, New York, 1966); and the articles by S. A.
Goudsmit and G. E. Uhlenbeck in Phys. Today 29 (6), 40 (June, 1976).

M. Jammer, Ref. 1, pp. 152 and 153.

3B. L. van der Waerden, Ref. 1, p. 216.

“For instance, P. A. M. Dirac, The Principles of Quantum Mechanics
(Oxford U. P., Oxford, 1958), p. 142; D. 8. Saxon, Elementary Quan-
tum Mechanics (Holden-Day, San Francisco, 1968), p. 191.

SA. Beiser, Perspectives of Modern Physics (McGraw-Hill, New York,
1969), p. 225, goes so far as to claim that “...Dirac was able to show on
the basis of a relativistic quantum-mechanical treatment that particles
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having the charge and mass of the electron must have just the intrinsic
angular momentum and magnetic moment attributed to them by
Goudsmit and Uhlenbeck”. This is somewhat of an exaggeration since,
without prior knowledge of the spin of the electron, we cannot know that
Dirac’s equation is applicable.

SF. J. Belinfante, Physica 6, 887 (1939).

W. Gordon, Z. Phys. 50, 630 (1928).

8For example, G. Wentzel, Quantum Theory of Fields (Interscience, New
York, 1949).

°For instance, D. Hestenes, Am. J. Phys. 47, 5§ (1979).

10A clear discussion of the canonical versus the symmetrized energy-mo-
mentum tensor is given by D. E. Soper, Classical Field Theory (Wiley,
New York, 1976).

1L, Rosenfeld, Mem. Acad. R. Belg. 18, no. 6 (1940).

12The notation for spinors employed here is that of J. D. Bjorken and S. D.
Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York,
1964). The notation of Wentzel is slightly different.

The Gordon decomposition is often used in spinor calculations (see,
e.g., Ref. 12), but its importance in establishing a physical picture for
the origin of spin seems to have been forgotten.

4Note that the convection current and the spin current are separately
conserved:

3,[93*4— (3" $)¢] =0and d, 3, (Yo*y) = 0.
This is an immediate consequence of the antisymmetry of o*".

SWithin the nonrelativistic approximation, the “small” components can
be ignored when evaluating the right-hand side of Eq. (20), but they

cannot be ignored when evaluating the left-hand side.
16Reference 12.
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A categorization is given of all the methods for accelerating particles. It is shown that in principle
one can employ the large fields of a laser for this purpose as well as the wake fields of intense low-
energy particle beams. Discussion is given of four acceleration schemes which offer the possibility
of attaining very high-energy particles; namely, the inverse free-electron laser accelerator, the
beat-wave accelerator, the wake-field accelerator, and the two-beam accelerator.

L. INTRODUCTION

Ever since Cockcroft and Walton first produced nuclear
reactions by means of a particle accelerator, in that case an
electrostatic accelerator, physicists have bent their ingenu-
ity to the development of ever-more powerful machines.
The devices which have been developed include some re-
markable machines, such as the cyclotron and the beta-
tron, and some truly innovative concepts such as strong
focusing and stochastic cooling.!™

Of course, the driving force behind this effort has been
the ever-opening science which ever-higher energy has
made possible. The machines on the forefront of elemen-
tary particle physics are truly marvels of engineering. One
thinks of the Tevatron at Fermilab or the CERN Super
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Proton Synchrotron (SPS), with which the intermediate
bosons were discovered in 1983. Today, the physics of ele-
mentary particles demands very large machines such as
these two, and under construction are even larger machines
such as the Large Electron Positron Collider (LEP) which
will have a circumference of 27 km. Under serious consi-
deration is the Superconducting Super Collider (SSC), the
arguments for which have been presented recently.’
Although the arguments for the SSC are most compel-
ling, and we believe that it should be built, it is clear that the
progression of ever-larger machines cannot go on forever.
Yet, one can be sure that the scientific desire for ever-high-
er energies will continue unabated. In fact, if one looks
back over the last five decades, then one sees an almost
exponential rise in the available particle energy, as is de-
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